

OPTICS IN MOTION

OEM Fast Steering Mirror Controller Digital Potentiometer Version OIMC201-DP

Rev B, November 1st, 2015

Table of Contents

Table of Contents	2
Table of Figures	2
Controller Description:	3
Controller Digital Potentiometer Adjustments:	4
Potentiometer Adjustment Mode	6
X&Y Scale Pots:	9
X&Y Offset Pots:	9
X&Y P Pots:	9
X&Y I Pots:1	.0
X&Y D Pots:1	.0
X&Y Low Gain Pots:1	.0
Serial Input Mode1	.2

Table of Figures

Figure	1:	OEM controller Power Amp	3
Figure	2:	USB to 15 pin D RS422 Adapter	4
Figure	3:	Controller Mode Switch Setting	5
Figure	4:	Start up Screen	7
Figure	5:	Controller Input Connectors 1	.1
Figure	6:	OEM Controller ICD 1	. 6

Controller Description:

Optics In Motion LLC OEM controller is a compact version of our standard controller designed for OEM applications. The controller is powered by an external voltage source with a range of +/-15V to +/-24V.

The motor drive amplifier needs to be heat sunk to prevent overheating. This can be accomplished via a finned heat sink attached to the power amp, or with a thermal strap to dissipate the heat to the user's enclosure. The case of the power amplifier (OPA2544T) is connected to the negative power voltage input so it must be isolate by using heat sink pads and isolated washers. Verify that the case of the op-amp is isolated from ground before turning it on.

Figure 1: OEM controller Power Amp

Mirror commands are input to the controller through a 9 socket D sub-miniature connector. The commands are differential signals representing the x and y mirror positions, scaled to the +/- 10 volt range. For example, the X- command can be grounded and the X+ command can go from +10 volts to -10 volts. The input impedance of the command signals is 10K ohms. Monitor signals are provided for the actual mirror positions, error signals (feedback error between commanded position and actual position).

Controller Digital Potentiometer Adjustments:

Figure 2: USB to 15 pin D RS422 Adapter

Use a "USB to RS-422 adaptor cable" to connect from PC USB port to the 15 pin D connector (Digi-key PN 768-1042-ND)

When you power the PC on with the "USB to RS-422 adaptor cable" plugged in, you will need to install a driver. The driver can be downloaded from <u>www.ftdichips.com</u> The driver will create a virtual comport on the PC (COMX).

Figure 3: Controller Mode Switch Setting

Potentiometer Adjustment Mode

Switch setting: 8

Switch 1 = ONSwitch 2 = ONSwitch 3 = ONSwitch 4 = OFF

1	ON
2	
3	
4	

Set the DIP switch on the top of the controller PCB as shown in the figure (1-ON, 2-ON, 3-ON, 4-OFF). This will set the controller in tuning mode. When you turn the PC on with the adaptor cable connected, the controller will display start up screen stating potentiometer adjustment mode (use a hyperterminal program). Keying in 'V' will display the current tuning values.

The settings for the Comport are:

BAUD 115200 PARITY= none Bits= 8 Stop bits = 1

```
Multi-threaded TTY
File Edit TTY Transfer Help
Port
         Baud
                  Parity
                          Data Bits
                                   Stop Bits
                                              🗌 Local Echo 🔲 No Reading
                                ▼ 1
 COM10 🔽 115200 💌 None 💌 8
                                         •
                                              🔽 Display Errors 🔲 No Writing
                                              CR => CR/LF INo Events
 Font... Comm Events... Flow Control... Timeouts..
                                     Disconnect
                                              Autowrap 🗌 No Status
OPTICS IN MOTION LLC.
DIGITAL I/O CONTROLLER VER 1.01
POTENTIOMETER ADJUSTMENT (switch value=8)
Input Parmeter:
P = proportional constant
I = intergral value
D = derivative value
S = scale factor
0 = offset value
X = select x axis
Y = select y axis
Z = enable axes
z = disable axes
V = displays all parameters
A = saves all parameters to flash
Input Parameter: V
X axis: P=970, I=0, D=875, Scale=150, Offset=512, Lp=300, Li=0, Ld=300
Y axis: P=970, I=0, D=900, Scale=0, Offset=512, Lp=300, Li=0, Ld=300
Input Parameter:
```

Figure 4: Start up Screen

The input parameters are as follows:

```
P = proportional constant
```

Pressing a capital P will ask the user to input a P parameter value for the currently selected axis.

Valid range = 0-1023

```
I = integral value
```

Pressing a capital I will ask the user to input an I parameter value for the currently selected axis. Valid range = 0-1023

D = derivative value
Pressing a capital D will ask the user to input a D parameter
value for the currently selected axis.
Valid range = 0-1023

S = scale factor Pressing a capital S will ask the user to input a S parameter value for the currently selected axis.

Valid range = 0-1023

O = offset value
Pressing a capital O will ask the user to input a O parameter
value for the currently selected axis.

Valid range = 0-1023

X = a capital X will select the X-axis for ALL adjustments.

Y = a capital Y will select the Y-axis for ALL adjustments.

Z = capital Z enables both axes. lowercase Z disables both axes. V = both capital & lowercase: will display all current parameter values.

A = capital A saves all parameter values to static flash.

CAUTION must be taken to record values. Using the capital A loses the factory settings. Factory settings are recorded on test value sheet.

T = will run a program that will use the low gain PID parameters when the error exceeds a threashold of 1.5 volts (used to reduce overshoot during a step)

Lowercase p, i, d will set low gain PID values.

This mode is only active when the DIP switch on the controller is set to (1=OFF, 2=ON, 3=ON, 4=ON) This setting als e controller in digital command mode (RS422 serial commands control mirror position).

X&Y Scale Pots:

Change the mirror angular range versus command inputs. To adjust, sweep the mirror full scale +/-10 volts and turn pot until desired angular range is reached. Caution this scale may be larger than the physical mirror range or the position sense detector range.

X&Y Offset Pots:

Adjust this potentiometer to move the mirror null pointing position to zero out any desired offset pointing. The range of adjustment is $\sim +/-1.5$ volts of displacement per axis.

X&Y P Pots:

Adjusts the 'P' term of the PID controller

X&Y I Pots:

Adjusts the 'I' term of the PID controller

X&Y D Pots:

Adjusts the 'D' term of the PID controller

X&Y Low Gain Pots:

Used to set low gain P value to eliminate overshoot during large mirror steps. To adjust, input a full scale square wave into the mirror controller (+/-10 volts @ 5Hz) and monitor the amount of mirror overshoot on an oscilloscope (monitor the x or y position outputs). Adjust the Low Gain Pot to minimize the overshoot while minimizing the slowing of the step response.

Controller DIP Switch Settings:

The DIP switch located on the controller sets the active mode of the controller. After changing the settings the controller must be power off and on, or the small RESET switch can be pressed (See figure 5 for the location of the RESET switch). The current valid setting for the switch are:

- 1) No program mode, 1=ON , 2=ON, 3=ON, 4=ON
- 2) Digital I/O, & low gain switching, 1=OFF, 2=ON, 3=ON, 4=ON
- 3) Parameter settings, 1=ON , 2=ON, 3=ON, 4=OFF

Figure 5: Controller Input Connectors

Serial Input Mode

Switch setting: 1

Set switch on BNC adaptor to position 1: Switch 1: OFF 1 Switch 2: ON 2 Switch 3: ON 3 Switch 4: ON 4 The mirror is now in the serial I/O mode.

In the serial input mode, the error on the FSM position is monitored and if the error goes above 1.5 volts, the FSM is switched from high to low gain PID mode. The reason the FSM goes into low gain mode is to reduce overshoot during large steps. If the user wishes to disable this feature, set the low gain values equal to the high gain values (See Potentiometer Adjustment mode SW8 for setting low gain PID values).

Using a comport communication program like Ultra Serial Port Monitor, which can be downloaded from www.download.com

The settings for the Comport are: BAUD 115200, PARITY= none, Bits= 8, Stop bits = 1

In serial mode, the FSM will accept binary commands to move mirror positions in the X and Y axes.

The format for the binary commands are as follows: FDXXXX hex FD = x commands XXXX = 16 bit signed integer value for mirror position. Range = -32,767 to +32,767 Null position corresponds to an input of 0 (FD0000H) Y commands = use FEXXXX hex

After a command is sent, the current position of the mirror is returned as 16 bits of data (X or Y, depends on command sent)

ON

Table 1: Command I/O Connector Wiring Table

9-Socket Sub-miniature I	D Connector
--------------------------	-------------

Pin		I/O	
Number	Signal Name	Туре	Description
1	X+ COMMAND	Input	X mirror command. High side of differential
			command input. Range +/-10 Volts.
2	Y ERROR	Output	Y summing junction error voltage output,
			difference between commanded and actual
			position. (referenced to ground)
3	GND	Output	Ground Reference
4	X ERROR	Output	X summing junction error voltage output,
			difference between commanded and actual
			position. (referenced to ground)
5	Y+ COMMAND	Input	Y mirror command. High side of differential
			command input. Range +/-10 Volts.
6	X- COMMAND	Input	X mirror command. Low side of differential
			command input. Range +/-10 Volts.
7	X POSITION	Output	X mirror angular position readout from local
			position sensor. (referenced to ground)
8	Y POSITION	Output	Y mirror angular position readout from local
			position sensor. (referenced to ground)
9	Y- COMMAND	Input	Y mirror command. Low side of differential
			command input. Range +/-10 Volts.

Table 2: External I/O Connector Wiring Table

Pin		I/O	
Number	Signal Name	Туре	Description
1	TX+	Output	RS422 signals
2	RX+	Input	RS422 signals
3	DIO1	In/Out	Digital input or output, can be configured in software
4	DIO3	In/Out	Digital input or output, can be configured in software
5	+12 VOLTS	Output	+12 VDC for external loads of less than
			100ma.
6	+3.3 VOLTS	Output	+3.3 VDC for external loads of less than
			100ma.
7	INT/EXT SWITCH	Input	Normally low TTL input. High level switches
			the position feedback input from local to
			external. Referenced to ground leave
			unconnected for normal operation.
8	X EXTERNAL	Input	X external mirror position (from external quad
			or similar position sensor*) Range +/-10 Volts.
9	TX-		RS422 signals
10	RX-		RS422 signals
11	DIO2		Digital input or output, can be configured in software
12	DIO4		Digital input or output, can be configured in software
13	-12 VOLTS	Output	-12 VDC for external loads of less than
			100ma.
14	GND	Output	Ground Reference
15	Y EXTERNAL	Input	Y external mirror position. (from external quad
			or similar position sensor*) Range +/-10 Volts.

15-Socket	Sub-miniature	D	Connector
10 0001000	ous minutate	_	0011110000

* Note: Signals from external position sensor must be electronically processed and converted to analog voltages. These signals should be of opposite polarity to the position sensor outputs and of the same magnitude.

Table 3: Power Input Connector Wiring Table

Pin		I/O	
Number	Signal Name	Туре	Description
1	-15 to -24 VDC	Input	Negative Supply min 2 amps
2	GND	Input	Positive and Negative Supply Return
3	+15 to +24 VDC	Input	Positive Supply min 2 amps
4	EARTH GND	Input	Earth Ground, may be tied to GND

Connector - Molex, Right Angle, 4 pin (DigiKeyWM4302)

PIN 1

Mating Molex Connector Digikey PN (WM2614-ND)

Figure 6: OEM Controller ICD

16